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Additional Practice CS103 Final Exam

This additional practice final exam is not for extra credit, but is designed to give you extra prac-
tice for the final exam.  This exam was given in the Spring 2012 offering of CS103 and is similar 
in structure to the exam for this quarter.

Question Points Grader

(1) Relations Revisited (30) / 30

(2) Regular Languages (30) / 30

(3) Context-Free Languages (25) /  25

(4) R and RE Languages (60) / 60

(5) P and NP Languages (35) / 35

(180) / 180

Problem One: Relations Revisited (30 Points)

Recall that a binary relation R over a set A is formally defined as a subset of A × A; that is, R is a 
set of ordered pairs (x, y) where xRy iff (x, y)  ∈ R.  This means that in addition to our previous 
treatment of relations, we can consider relations from a set-theoretic perspective.

(i) Properties of Equivalence Relations (15 Points)

Prove or disprove: Every binary relation R over a set A is a subset of some equivalence relation 
over the set A.

(ii) Properties of Partial Orders  (15 Points)

Prove or disprove: Every binary relation R over a set A is a subset of some partial order relation 
over the set A.
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Problem Two: Regular Languages (40 Points Total)

Given two strings of 0s and 1s, we say that those strings have the same 1-parity iff both of the 
strings contain an odd number of 1s or both of the strings contain an even number of 1s.

Consider the following language over Σ = {0, 1, M}:

1PARITY = { w Mx | w, x  {∈ 0, 1}* and w and x have the same 1-parity }

For example, 01M111  ∈ 1PARITY, 0011M111111  ∈ 1PARITY, and M  ∈ 1PARITY.  However, 
1M0  ∉ 1PARITY, MM  ∉ 1PARITY, 00M01  ∉ 1PARITY, and ε  ∉ 1PARITY.

(i) Finite Automata (10 Points)

Design a DFA for 1PARITY.

(ii) Regular Expressions (10 Points)

Write a regular expression for 1PARITY.

Consider the following language over the alphabet Σ = {1, ≥}:

GE = { 1m≥1n | m, n   and ∈ ℕ m ≥ n }

(iii) The Pumping Lemma (15 Points)

Using the pumping lemma for regular languages, prove that GE is not regular.  To help out, we 
have sketched out a part of the proof; you should fill in the appropriate blanks.

Proof: By contradiction; assume that GE is regular.  Let n be the length 
guaranteed by the pumping lemma.  Then consider the string w =  
We then have that w ∈ GE and |w| ≥ n, so by the pumping lemma we can 
write w = xyz such that |xy| ≤ n, y ≠ ε, and for any i ∈ ℕ, xyiz ∈ GE.

(finish the proof in the box below)

We have reached a contradiction, so our assumption was wrong and CONTAINS 
is not regular. ■
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Problem Three: Context-Free Languages (25 Points Total)

(i) Writing CFGs (10 Points)

Let Σ = {0, 1}.  Consider the language NEP defined as follows:

NEP = { w  Σ* | ∈ w is not an even-length palindrome }

For example,  0111  ∈ NEP,  101  ∈ NEP,  101010  ∈ NEP.  However,  10100101  ∉ NEP, 
ε ∉ NEP, and 0000  ∉ NEP.  Write a CFG for NEP.

In lecture, we sketched a proof that if a language is context-free, there is a PDA for that language. 
Our proof constructed a PDA from an arbitrary CFG that tried to simulate a derivation of the in-
put string from the start symbol.  The construction built a PDA with three states:

• A start state that sets up the PDA's stack with the start symbol of the grammar.

• A parsing state where each transition simulates either predicting which production to use 
or matching a predicted symbol with the next character of the input.

• An accepting state entered when we find that the input string could be parsed.

The only part of the PDA that depends on the grammar is the set of transitions from the parsing 
state to itself.  This state always has the transition Σ, Σ → ε to itself.  Additionally, it has one  
transition for every production in the grammar.  For example, given the following grammar:

S → Aa | bB
A → ε | aAb

B → b | bbAB

The resulting PDA is as follows:

start   
ε, ε → S  ε, Z0 → ε   

   

ε, S → Aa
ε, S → bB
ε, A → ε

ε, A → aAb
ε, B → b

ε, B → bbAB
Σ, Σ → ε

Given a grammar G, let's denote by P(G), the automaton constructed this way.  For most gram-
mars G, P(G) is an NPDA.  However, there are grammars G for which P(G) is a DPDA.

(ii) Deterministic Parsing Automata (15 Points)

What property or properties must a context-free grammar G have for P(G) to be a DPDA?  Ex-
plain why P(G) is a DPDA iff  G has the property or properties that you describe, though you 
don't need to formally prove it.  Make sure to address both directions of implication.
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Problem Four: R and RE Languages (60 Points Total)

(i) RE and Verifiers (20 Points)

Recall that a verifier for a language L is a Turing machine V such that

w  ∈ L    iff    ∃x  Σ*. ∈ V accepts ⟨w, x  ⟩

In the context of NP we considered polynomial-time verifiers, verifiers that run in time polyno-
mial in the size of w.  Let's relax this description and define a deciding verifier to be a verifier V 
for a language L such that V is a decider (that is, V halts on all inputs).

Prove that if there is a deciding verifier for a language L, then L  ∈ RE.

(ii) Unsolvable Problems (25 Points)

Consider the following language Lsome:

Lsome = { ⟨M  | (⟩ ℒ M) ≠ Ø and (ℒ M) ≠ Σ* }

Prove that Lsome  ∉ RE.

(iii) Properties of Reductions (15 Points)

Prove or disprove: If L1 ≤M L2 and L1 ≤M L3, then L1 ≤M L2 ∩ L3.
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Problem Five: P and NP Languages (35 Points Total)

Just how hard are the NP-complete problems?  In a sense, they are the “hardest” problems in NP, 
because a solution to any one of them can be used to solve all other NP problems.  How accurate 
is that intuition?

It turns out that is possible to construct languages that are NP-complete but which can be decided 
efficiently in many cases.  One way to do this uses the disjoint union operation that you saw in 
Problem Set 8.  Recall that given language L1 and L2 over {0, 1}*, the disjoint union L1  ⊎ L2 is

L1  ⊎ L2 = { 0w | w  ∈ L1 }  { ∪ 1w | w  ∈ L2 }

(i) Relatively Easy NP-Complete Languages (20 Points)

Let L1 be an NP-complete language and let L2 be any language in P.  Prove that L1  ⊎ L2 is NP-
complete.  This new language, while  NP-complete, is easy for many inputs; we can decide in 
polynomial-time whether any string starting with a 1 is contained within L1  ⊎ L2.

(ii) P ≟ NP (15 Points)

What would it take to prove whether P = NP?

Below are  ten  statements.   For  each statement,  if  the  statement  would  definitely prove  that 
P = NP, write “P =  NP” on the appropriate line.  If the statement would definitely prove that 
P ≠ NP, write “P ≠ NP” on the appropriate line.  If the statement would not prove either result, 
write “neither” on the appropriate line.  No explanation is necessary.

There is a regular expression for SAT.

There is no regular expression for SAT.

There is a deterministic polynomial-time algorithm for SAT.

There is a nondeterministic polynomial-time algorithm for SAT.

Every f(n)-time single-tape NTM can be converted
into a f(n)8-time single-tape TM.

Every f(n)-time multitape NTM can be converted
into a f(n)8-time multitape TM.

For any k, there is a language in NP that cannot be decided in time O(nk).

There is a language in NP that, for any k, cannot be decided in time O(nk).

There is a polynomial-time TM that correctly decides SAT for all strings of
length at most 10100, but might give incorrect answers for longer strings.

There is a polynomial-time TM that correctly decides SAT for all strings of
length at least 10100, but might give incorrect answers for shorter strings.
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